Ananya Mukundan
Research Interests: The Hinck lab uses structural and biophysical tools (NMR, X-ray crystallography, SPR, ITC, etc.) to study the signaling proteins and receptors of the TGF-β family. TGF-β plays important physiologic and pathogenic roles, being implicated in immune regulation, cell proliferation/differentiation, and cancer progression. My research aims to characterize a parasitic TGF-β mimic that binds to the type 1 and type 2 TGF-β receptors (TβRI and TβRII) by characterizing the structure of this mimic and analyzing its binding interfaces with TβRI and TβRII. I use a combination of biochemical techniques, NMR, and ITC/SPR experiments.
Education:
B.A. in Biophysics, University of Michigan, 2016
PhD Advisor: Dr. Andrew P. Hinck
Lab Address:
email: anm276 [at] pitt.edu
Publications:
Wesley Brown
Research Interests:
My work involves expanding the genetic code of zebrafish to incorporate unnatural amino acids into proteins of interest. I have used this technology to optically control enzymes by installing photolabile groups into the active site. Additionally, I am developing a phosphine-triggered protein activation method by placing aryl-azide caged lysine into enzymes. I am also developing a method for incorporation of chemically diverse residues into proteins in zebrafish through injection of chemically acylated tRNA. Aside from genetic code expansion, I am generating optically-controlled CRISPR-based tools in zebrafish and light-activated morpholino oligonucleotide gene knockdown.
Education:
B.S in Bioresource Research, B.A in International Studies, 2016, Oregon State University
PhD Advisor: Dr. Alexander Deiters
Lab Address:
13th Floor
Chevron Science Center
219 Parkman Ave, Pittsburgh, PA
email: web27@pitt.edu
Publications:
-
Zhou W, Brown W, Bardhan A, Delaney M, Ilk AS, Rauen RR, Kahn SI, Tsang M, Deiters A. Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA. Angew. Chem. Int. Ed. 2020 , 59 , 8998.
-
Brown W, Deiters A. Light-activation of Cre recombinase in zebrafish embryos through genetic code expansion. Methods Enzymol. 2019;624:Ch. 13
3) Brown W, Liu J, Deiters A. Genetic Code Expansion in Animals. ACS chem biol. 2018;13(9):2375-86 -
Brown W, Liu J., Tsang M., Deiters A.; Cell‐Lineage Tracing in Zebrafish Embryos with an Expanded Genetic Code, ChemBioChem, 27 April 2018, Vol.19(12), 1244-1249
-
Bednar R, Golbek T, Kean K, Brown W, Jana S, Baio J, Karplus PA, Mehl R. Immobilization of Proteins with Controlled Load and Orientation, ACS Appl. Mater. Interfaces 2019, 11, 40, 36391-36398
-
Blizzard RJ, Backus DR, Brown W, Bazewicz CG, Li Y, Mehl RA. Ideal Bioorthogonal Reactions Using A Site-Specifically Encoded Tetrazine Amino Acid. J Am Chem Soc. 2015;137(32):10044-7
-
Brown W., Zhou W., and Deiters A., Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control, Chembiochem, 2020 (submitted)
Erich Hellemann Holguin
Research Interests: My background is in the use of anisotropic NMR parameters for the structural elucidation of small organic molecules. Currently, my research interests focus on computer-aided drug discovery, virtual screening, molecular dynamics simulations, and weighted ensemble path sampling.
Education:
B.S. in Chemistry, Universidad Nacional Autónoma de México, Ciudad de México, 2011
M. S. in Chemistry, Carnegie Mellon University, Pittsburgh, PA, 2016
PhD Advisor: Dr. Jacob Durrant
Lab Address:
103 Clapp Hall
4249 Fifth Ave
Pittsburgh, PA 15260
email: ehellemann [at] pitt.edu
Publications:
- Hellemann E., Gil RR New stretching method for aligning gels. Its application to the measurement Residual Chemical Shift Anisotropies (RCSAs) without the need for isotropic shift correction. Chemistry. 2018, 24(15), 3689-93
- Hallwass F, Teles RR, Hellemann E, Griesinger C, Gil RR, Navarro-Vazquez A. Measurement of residual chemical shift anisotropies in compressed PMMA gels. Automatic compensation of gel isotropic shift contribution. Magn Reson Chem. 2018 in press
- Waratchareeyakul W, Hellemann E, Gil RR, Chantrapromma K, Langat MK, Mulholland DA. Application of Residual Dipolar Couplings and Selective Quantitative NOE to Establish the Structures of Tetranortriterpenoids from Xylocarpus rumphii (Meliaceae). J Nat Prod, 2017, 80 (2), 391–402.
- Hellemann E, Teles RR, Hallwass F, Barros Jr. W, Navarro-Vázquez A, Gil RR, Mechanical behavior of polymer gels for RDCs and RCSAs collection. NMR imaging study of buckling phenomena, CHEM-EUR J, 2016, 22 (46), 16632–16635.
- Castañar L, García M, Hellemann E, Nolis P, Gil RR, Parella T, Efficient structure discrimination by fast and accurate measurement of residual dipolar couplings from a single experiment in PMMA compressed gels, J Org Chem, 2016, 81 (22), pp 11126–11131.
- García ME, Woodruff SR, Hellemann E, Tsarevsky NV, Gil RR, Di(ethylene glycol) methyl ether methacrylate (DEGMEMA)-derived gels align small organic molecules in methanol, Magn Reson Chem, 2017, 55 (3), 206-209.
-
Worch JC, Hellemann E, Pros G, Gayathri C, Pintauer T, Gil RR, Noonan KJT, Stability and Reactivity of 1,3-Benzothiaphosphole: Metallation and Diels-Alder Chemistry, Organometallics, 2015, 34 (22), 5366–5373.
-
Yuri Kochnev, Erich Hellemann, Kevin C Cassidy, Jacob D Durrant, Webina: An Open-Source Library and Web App that Runs AutoDock Vina Entirely in the Web Browser, Bioinformatics, , btaa579, https://doi.org/10.1093/bioinformatics/btaa579
Samuel Johnson
Research Interests:
I am interested in the structure and function of nucleic acids and the proteins that bind to and act on them. In the Opresko lab, my research focuses on nucleic acid structures that form within the telomere and how they influence interactions with telomerase. I am also part of a collaboration that aims to understand the structure and function of human telomerase.
Education:
B.S. in Chemistry with a Specialization in Biochemistry; University of Virginia (Charlottesville, VA), May 2017
PhD Advisor: Dr. Patricia Opresko
Lab Address:
Hillman Cancer Center,
Research Pavilion Lab 2.1,
5117 Centre Ave. Pittsburgh, PA 15213
email: saj98 [at] pitt.edu
Publications:
- Morgan RD, Luyten YA, Johnson SA, Clough EM, Clark TA, Roberts RJ. Novel m4C modification in type I restriction-modification systems. Nucleic Acids Res. 2016 Nov 2; 44(19): 9413-9425
-
Schaich MA, Sanford SL, Welfer GA, Johnson SA, Khoang TH, Opresko PL, & Freudenthal BD. (2020) Mechanisms of nucleotide selection by telomerase. eLife, 9:e55438. DOI: 10.7554/eLife.55438. [PubMed: 32501800]
Manish Aryal
Research Interests:
I am interested in deciphering the structural basis of protein-protein interactions between HIV protein and host cell proteins. I will be using various structural methods to deepen our understanding of how HIV protein Nef activates Tec family kinases.
Education:
B.A. in Biochemistry and Molecular Biology, The College of Wooster (Wooster, OH), May 2014
PhD Advisor: Dr. Thomas Smithgall
Lab Address:
University of Pittsburgh
Department of Microbiology and Molecular Genetics
533 Bridgeside Point II
450 Technology Dr.
Pittsburgh, PA 15219
email: manish.aryal - AT - pitt.edu
Publications:
- Fraga D, Aryal M, Hall JE, Rae E, Snider M. Characterization of the arginine kinase isoforms in Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:85-101
-
Li, W. F., Aryal, M., Shu, S. T., and Smithgall, T. E. (2020) HIV-1 Nef dimers short-circuit immune receptor signaling by activating Tec-family kinases at the host cell membrane. J Biol Chem 295, 5163-5174
-
Fraga, D., Stock, K., Aryal, M., Demoll, C., Fannin, L., and Snider, M. J. (2019) Bacterial arginine kinases have a highly skewed distribution within the proteobacteria. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 233, 60-71
-
Fraga, D., Aryal, M., Hall, J. E., Rae, E., and Snider, M. (2015) Characterization of the arginine kinase isoforms in Caenorhabditis elegans. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 187, 85-101